945 research outputs found

    High Accuracy Human Activity Monitoring using Neural network

    Full text link
    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical and empirical facts. The work shows a detailed description of the designing steps for the classification of human body acceleration data. A 4-layer back propagation neural network, with Levenberg-marquardt algorithm for training, showed best performance among the other neural network training algorithms.Comment: 6 pages, 4 figures, 4 Tables, International Conference on Convergence Information Technology, pp. 430-435, 2008 Third International Conference on Convergence and Hybrid Information Technology, 200

    Frequency based Classification of Activities using Accelerometer Data

    Full text link
    This work presents, the classification of user activities such as Rest, Walk and Run, on the basis of frequency component present in the acceleration data in a wireless sensor network environment. As the frequencies of the above mentioned activities differ slightly for different person, so it gives a more accurate result. The algorithm uses just one parameter i.e. the frequency of the body acceleration data of the three axes for classifying the activities in a set of data. The algorithm includes a normalization step and hence there is no need to set a different value of threshold value for magnitude for different test person. The classification is automatic and done on a block by block basis.Comment: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 200

    Frequency Domain Approach for Activity Classification using Accelerometer

    Full text link
    Activity classification was performed using MEMS accelerometer and wireless sensor node for wireless sensor network environment. Three axes MEMS accelerometer measures body's acceleration and transmits measured data with the help of sensor node to base station attached to PC. On the PC, real time accelerometer data is processed for movement classifications. In this paper, Rest, walking and running are the classified activities of the person. Both time and frequency analysis was performed to classify running and walking. The classification of rest and movement is done using Signal magnitude area (SMA). The classification accuracy for rest and movement is 100%. For the classification of walk and Run two parameters i.e. SMA and Median frequency were used. The classification accuracy for walk and running was detected as 81.25% in the experiments performed by the test persons.Comment: 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, August 20-24, 200

    Accuracy and stability analysis of path loss exponent measurement for localization in wireless sensor network

    Get PDF
    In wireless sensor network localization, path loss model is often used to provide a conversion between distance and received signal strength (RSS). Path loss exponent is one of the main environmental parameters for path loss model to characterize the rate of conversion. Therefore, the accuracy of path loss exponent directly influences the results of RSS-to-distance conversion. When the conversion requires distance estimation from RSS value, small error of measured path loss exponent could lead to large error of the conversion output. To improve the localization results, the approaches of measuring accurate parameters from different environments have become important. Different approaches provide different measurement stabilities, depending on the performance and robustness of the approach. This paper presents four calibration approaches to provide measurements of path loss exponent based on measurement arrangement and transmitter/receiver nodeā€™s allocation. These include one-line measurement, online-update spread locations measurement, online-update small-to big rectangular measurement, and online-update big-to-small rectangular measurement. The first two are general approaches, and the last two are our newly proposed approaches. Based on our research experiments, a comparison is presented among the four approaches in terms of accuracy and stability. The results show that both online-update rectangular measurements have better stability of measurements. For accuracy of measurement, online-update big-to-small rectangular measurement provides the best result after convergence

    Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip

    Get PDF
    Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.113Ysciescopu

    Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications

    Get PDF
    Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities

    A Comprehensive Ubiquitous Healthcare Solution on an Androidā„¢ Mobile Device

    Get PDF
    Provision of ubiquitous healthcare solutions which provide healthcare services at anytime anywhere has become more favorable nowadays due to the emphasis on healthcare awareness and also the growth of mobile wireless technologies. Following this approach, an Androidā„¢ smart phone device is proposed as a mobile monitoring terminal to observe and analyze ECG (electrocardiography) waveforms from wearable ECG devices in real time under the coverage of a wireless sensor network (WSN). The exploitation of WSN in healthcare is able to substitute the complicated wired technology, moving healthcare away from a fixed location setting. As an extension to the monitoring scheme, medicine care is taken into consideration by utilizing the mobile phone as a barcode decoder, to verify and assist out-patients in the medication administration process, providing a better and more comprehensive healthcare service

    Methods to detect and reduce driver stress: a review

    Get PDF
    Automobiles are the most common modes of transportation in urban areas. An alert mind is a prerequisite while driving to avoid tragic accidents; however, driver stress can lead to faulty decision-making and cause severe injuries. Therefore, numerous techniques and systems have been proposed and implemented to subdue negative emotions and improve the driving experience. Studies show that conditions such as the road, state of the vehicle, weather, as well as the driverā€™s personality, and presence of passengers can affect driver stress. All the above-mentioned factors significantly influence a driverā€™s attention. This paper presents a detailed review of techniques proposed to reduce and recover from driving stress. These technologies can be divided into three categories: notification alert, driver assistance systems, and environmental soothing. Notification alert systems enhance the driving experience by strengthening the driverā€™s awareness of his/her physiological condition, and thereby aid in avoiding accidents. Driver assistance systems assist and provide the driver with directions during difficult driving circumstances. The environmental soothing technique helps in relieving driver stress caused by changes in the environment. Furthermore, driving maneuvers, driver stress detection, driver stress, and its factors are discussed and reviewed to facilitate a better understanding of the topic

    Sensor fusion of motion-based sign language interpretation with deep learning

    Get PDF
    Sign language was designed to allow hearing-impaired people to interact with others. Nonetheless, knowledge of sign language is uncommon in society, which leads to a communication barrier with the hearing-impaired community. Many studies of sign language recognition utilizing computer vision (CV) have been conducted worldwide to reduce such barriers. However, this approach is restricted by the visual angle and highly affected by environmental factors. In addition, CV usually involves the use of machine learning, which requires collaboration of a team of experts and utilization of high-cost hardware utilities; this increases the application cost in real-world situations. Thus, this study aims to design and implement a smart wearable American Sign Language (ASL) interpretation system using deep learning, which applies sensor fusion that ā€œfusesā€ six inertial measurement units (IMUs). The IMUs are attached to all fingertips and the back of the hand to recognize sign language gestures; thus, the proposed method is not restricted by the field of view. The study reveals that this model achieves an average recognition rate of 99.81% for dynamic ASL gestures. Moreover, the proposed ASL recognition system can be further integrated with ICT and IoT technology to provide a feasible solution to assist hearing-impaired people in communicating with others and improve their quality of life
    • ā€¦
    corecore